Mountaintop removal sp 09: Difference between revisions
(190 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
[[Image:Mountaintop.jpg|250px|thumbnail|<center>Intermediate step in process of Mountaintop Removal</center>]] | |||
==Mountaintop Removal Mining== | |||
===History=== | ===History=== | ||
Demand for coal in the United States increased substantially in the 1970’s due to the 1973 and 1979 energy crises.[http://en.wikipedia.org/wiki/Mountaintop_removal] This created incentives to conduct a more efficient form of coal mining than traditional underground mining methods. This triggered the first widespread use of mountaintop removal (MTR), which involves far fewer workers than traditional underground mining. Its popularity spread into the 1990’s, when MTR proved to be an efficient way of retrieving low-sulfur coal, which came into high demand as a result of the U.S. Clean Air Act tightening emissions limits on high-sulfur coal processing.[http://en.wikipedia.org/wiki/Mountaintop_removal] MTR has continued to expand into the 2000’s due to increasing calls for energy independence and clean coal technologies.[http://en.wikipedia.org/wiki/Mountaintop_removal] Coal companies in the United States continue to use MTR mining because it allows for almost complete recovery of coal seams while increasing profits - by reducing the number of workers required to a fraction of what traditional underground mining methods require.[http://www.appvoices.org/index.php?/site/mtr_overview/] | |||
Mountaintop Removal occurs primarily throughout the Appalachian Mountains in Appalachia. The states most affected are Virginia, West Virginia, Kentucky, Tennessee, and North Carolina, with West Virginia and Eastern Kentucky feeling the largest impact. The United States Environmental Protection Agency (EPA) estimates that MTR will lead to 1.4 million acres across Appalachia being mined by 2010.[http://en.wikipedia.org/wiki/Mountaintop_removal] | |||
===Process=== | |||
[[Image:ValleyFill.jpg|100px|thumbnail|<center>Valley Fill</center>]] | |||
# Trees are clear cut. | |||
# Explosives are used to loosen the rocks and topsoil. | |||
# Huge shovels dig into the topsoil and trucks haul the topsoil away. | |||
# A dragline digs into the mountain to expose the coal. | |||
# The dragline and large trucks dump the topsoil and rocks into "valley fills." | |||
# Land is reclaimed. [http://www.ohvec.org/issues/mountaintop_removal/articles/2004_08_09.html] | |||
===Political Climate & Laws=== | ===Political Climate & Laws=== | ||
=== | ====History==== | ||
< | |||
The most important federal laws that regulate mountaintop removal in the United States are the Surface Mining Control and Reclamation Act (SMCRA), the Clean Water Act (CWA), the Clean Air Act, the Endangered Species Act (ESA), and the Federal Mine Safety and Health Act. The specific Congressional authorization of mountaintop removal begain with the SMCRA in 1977. This legislation created the Office of Surface Mining Reclamation and Enforecement (OSM), which was in charge of establishing a program nationwide to protect society from the bad impacts of coal mining. The SMCRA established that coal mining must be consistent with specific environmental performance standards, from the beginning of the mining operation, throughout the entire project to its completion. It also established a permit system in which mining companies must complete permit applications containing information about the proposed operation and the company itself. The application must also include an environmental analysis of how compliance will be met.[http://www.nma.org/pdf/fact_sheets/mtm.pdf] The Clean Water Act also regulates mining operations, specifically regarding the operations discharges of pollutants to streams from valley fills and the valley fill itself.[http://www.epa.gov/region3/mtntop/index.htm] Mountaintop removal violators of the Clean Water Act face severe penalties. | |||
[[Image:Office of Surface Mining seal.jpg|thumb|left|Seal of OSM]] | |||
For example, in February 2009, Patriot Coal Company, one of the largest US coal mining companies paid $6.5 million to settle violations of the Clean Water Act. This was the third largest penalty ever paid for discharge violations in a federal Clean Water Act case. The company agreed to prevent future violations and to perform environmental projects as a result of the failure of their previous standards. [http://www.epa.gov/region3/mtntop/index.htm] | |||
====<i>Bragg v. Robertson</i>==== | |||
A settlement agreement after the court case of <i> Bragg v. Robertson, Civ. No. 23:98-0636 (S.D. W.V.)</i> provoked a joint programmatic environmental impact statement done by the Environmental Protection Agency, the US Army Corps of Engineers, the US Department of the Interior's Office of Surface Mining and Fish & Wildlife Service, and the West Virginia Department of Environmental Protection. Patricia Bragg was a resident of a former coal camp in West Virginia, and she alleged that the West Virginia State agencies had failed to enforce environmental laws regarding mountaintop removal. She also alleged that the DEP had engaged in a "pattern and practice of approving buffer zone variances that unlawfully allowed the burial of substantial parts of intermittent and perennial streams." She was arguing that the concept of valley fills violated the standard already set by the DEP. The case was heard by Cheif Judge Charles Haden, who determined that valley fills violated the former standards. His decision was reversed by the Fourth Circuit Court of Appeals, concluding that West Virginia could not be prosecuted under the doctrine of sovereign immunity.[http://www.progressiveregulation.org/perspectives/mt_top.cfm] Regardless of the ruling, the impact of this court case was the join programmatic environmental impact statement. This impact statement evaluated options for improving different agency programs to reduce the harmful environmental impacts of mountaintop removal in Appalachia. This was an approach by multiple agencies to coordinate regulation of mountaintop removal, which was a necessary step to improving the environmental standards of mountaintop removal. [http://www.epa.gov/region3/mtntop/index.htm] | |||
====Current Political Status==== | |||
As of late March 2009, the EPA decided to review permitting for mountaintop removal in two projects in West Virginia and Kentucky. The EPA plans to asses the impacts of these projects on water quality and aquatic life. Groups like the Sierra Club praise this decision, as it is likely to lead to an examination of an entire industry's practices. Groups such as the National Mining Association think that the EPA's decision jeopardizes thousands of jobs.[http://www.nytimes.com/gwire/2009/03/24/24greenwire-epa-halts-mountaintop-permitting-will-review-w-10274.html] | |||
[[Image:Lisa Jackson.jpg|thumb|right|EPA Administrator Lisa Jackson and President Obama on Mountaintop Removal Permits ]] | |||
This decision comes at a time when there is great dispute over the existence of mountaintop removal. There is a predicament amongst states, especially those in Appalachia, which face poverty and low per capita income. For tens of years, mining has been the only industry in small towns across Appalachia. Due to the environmental harm of mountaintop removal, there has been a coalition of interests to put mountaintop removal to an end. Additionally, political establishment in these states have been "unwavering" in their support for the coal industry, making reform difficult.[http://www.smithsonianmag.com/science-nature/36176804.html] | |||
Little policy initiative has been made by President Obama on mountaintop removal. During his campaign, he expressed "serious concerns about the practice" but would not advocate for a mountaintop removal ban, like his opponent Senator McCain did.[http://www.herald-dispatch.com/archive/x221549987/] | |||
== | ==Health Effects== | ||
Though mountaintop removal is efficient in terms of extracting coal, according to the Center for Progressive Reform, mountaintop removal has high social costs in terms of human health impacts. When mountains are flattened, the displaced land is put into valleys, which results in "valley fills." These valley fills result in moving soil which fills streams and rivers. This results in flash floods, polluted drinking water, thick dust, and never ending noise for residents. [http://www.progressiveregulation.org/perspectives/mt_top.cfm] | |||
===Alternatives to Mountaintop Removal | According to the Sierra Club, the material from mountain tops and the waste created from coal mining are also put into artifically made waste ponds and lakes. These ponds are typically located very close to community centers, schools, businesses, or homes, putting community members at risk. In 1972 one of these ponds failed in Buffalo Creek, West Virginia, causing a flood. The flood killed 125 people, injured 1,000 people, and left 4,000 people homeless. In 2000, a similar pond failed in Inez, KY, putting 300 million gallons of pollutants into waterways. The danger of these waste ponds failing still exists today throughout Appalachia. For example, currently in Sundial, WV there is a waste lake only 400 yeards from an elementary school. [http://www.sierraclub.org/MTR/] | ||
[[Image:Buffalo creek.jpg|thumb|left|1972 Buffalo Creek Flood]] | |||
[[Image:Contaminated water.jpg|thumb|right|Contaminated Drinking Water in Tennessee]] | |||
According to the Smithsonian, the mountain top mining waste creates harmful chemical compounds that would not have otherwise been released. These compounds and metals include lead, aluminim, chromium, manganese, and selenium. Ben Stout, a biologist at Wheeling Jesuit University found barium and arsenic within the coal mining waste in amounts and concentrations that almost qualify as hazardous. Other scientists, professor Michael Hendryx at West Virginia University and Melissa Ahern of Washington State University studied mortality rates at mining sites in West Virginia. They adjusted other factors (such as poverty and occupational illness) and found significantly higher elevations in death for chronic lung, heart and kidney disease, and lung and digestive-system cancer. The number of people who died overall was higher in these areas as well.[http://www.smithsonianmag.com/science-nature/36176804.html] | |||
== Ecological Effects == | |||
Mountaintop removal can have devastating environmental impacts on the ecosystem. In order to do mountaintop removal, it is necessary to cut tracts of forest. The forest may not be able to come back easily in areas that have been cut because the soils become compacted (EPA, 2009). Due to the cutting, forests can become fragmented (EPA, 2009) which is a serious problem for biodiversity in an area. Fragmentation breaks up forests into many pieces rather than keeping a large tract intact together. As a result, there is more exterior forest area rather than interior forests which can cause declines in certain species, such as songbirds, that rely on inner areas of the forest (Sustainable Forests Partnership, 2008). This can cause an overall decline in biodiversity and make ecosystems more susceptible to invasive species (Sustainable Forests Partnership, 2008). The change in ecosystem make-up on reclaimed mine land can also change the species composition. Grassland birds become more common and amphibians become less common (EPA, 2009).[http://www.epa.gov/Region3/mtntop/#impacts] Several bird species that rely on mature interior forests for nesting have greatly decreased in population (American Bird Conservancy, 2007). The clearing of forests permanently affects their habitat and may make conservation efforts more difficult (American Bird Conservancy, 2007). | |||
[[Image:Polluted stream.jpg|265px|thumbnail|left|<center> Clean stream, right, polluted by Mining wastes, left</center>]] | |||
Mountaintop removal is also responsible to for a large amount of degradation to streams. In a 12-million-acre area in east Kentucky, south West Virginia, west Virginia, and east Tennessee, 1,200 miles of streams have been damaged by mountaintop removal (Lindsey, 2007). When a valley fill is done, they can sometimes can completely bury and destroy the stream all together (EPA, 2009). Even if when streams are not completely covered by stream fills, they can still suffer extreme degradation from the pollution of mining. Studies of impacted streams have shown an increase in many minerals such as zinc, sodium, selenium, and sulfate which can all have negative impacts on organisms in streams (EPA, 2009). Again, these minerals can decrease biodiversity by killing off more sensitive species. A study done by Pond, Passmore, Borsuk, Reynolds, and Rose found that there was a link between mountaintop removal and a degradation in the biological community of macroinvertebrates in streams. Many toxic elements can also be found in concentrations greater than government standards in streams near mountaintop removal sites (Lindsey, 2007). Valley fills can greatly increase the severity of flash flooding (Lindsey, 2007). | |||
[[Image:MartinCountySpill2.jpg|250px|thumbnail|<center>Sludge Dam Break in Martin County, Kentucky</center>]] | |||
Sludge dams, in which companies dump the rubble and wastes of taking the tops of mountains, can also contribute to negative environmental impacts. In 2000, a sludge dam broke in Martin County, Kentucky and miles of waterways were flooded with 300 million gallons of toxic sludge (many times more than the Valdez oil spill) (Appalachian Voices, 2007). The disaster killed all aquatic life within 70 miles of the break. Towns along the Tug fork of Big Sandy River could not drink from their tap water. The spill contained several toxic elements including arsenic, mercury, lead, copper and chromium (Wise Uranium Project 2008). The estimates of the clean up costs were as high as $60 million (Wise Uranium Project 2008). The Martin County Coal Corp claimed that the break was an "act of god" (Wise Uranium Project 2008). There are still 45 sludge dams in West Virginia (Appalachian Voices, 2007) that are quite a high risk for breaking which could potentially be responsible for more environmental disasters such as they one in Martin County. | |||
Usually reclamation efforts for mountain-top removal involve companies planting non-native grasses on destroyed slopes. This is not particularly effective because it changes the forest ecosystem for more of a grassland ecosystem. Birds that nest in forests, such as Cerulean Warblers, will not use these grassland areas (American Bird Conservancy, 2007). Companies could reforest this land which would probably somewhat decrease the effects of loss of biodiversity to a small degree (American Bird Conservancy, 2007). However, companies rarely do this as it is more expensive and not required by law. The only small benefit to reclamation efforts is that they provide early successional forest areas which provide habitat for some high conservancy species which require these areas such as the Henslow's Sparrow, Golden-winged Warbler, American Woodcock, and Northern Bobwhite (American Bird Conservancy, 2007). However, these areas can easily be created in other ways using good forest management techniques (which don't involve fragmentation). | |||
==Employment & Economic Costs== | |||
[[Image:G miners.gif|275px|thumbnail|<center>Unemployment vs. Productivity</center>]] | |||
What used to take a few hundred miners a decade to do, now takes a dozen equipment operators and blasting technicians only a couple of years. Over the past few decades in Appalachia, there has been a drastic decrease in employment in the coal mining industry. This is partly due to new technology, but mostly due to the increase in mountaintop removal as opposed to underground mining. | |||
[[Image:G unemployment.gif|250px|thumbnail|left|<center>Unemployment in West Virginia's coal producing counties</center>]] | |||
According to the Bureau of Labor Statistics, in the early 1950’s there were between 125,000 and 145,000 miners employed in West Virginia; in 2004 there were just over 16,000. And during this same time period, coal production rose 32%.[http://www.appvoices.org/index.php?/mtr/economics/] Overall, in the Appalachian region, coal mining productivity went up an average of 4.9% every year between 1988 and 1997, and it remained 52% higher in 2003 compared to 1988,[http://windpub.com/dirtymoney.htm] while employment in the mining industry in Appalachia has drastically decreased since then. In 1979, there were 35,902 mining jobs in Eastern Kentucky and by 2003 there were only 13,036.[http://windpub.com/dirtymoney.htm] This drastic decrease in employment has been attributed to the use of mountaintop removal mining as opposed to underground mining. With the use of current technologies, underground mines employ 1.5 times as many miners per ton produced as surface mines do.[http://www.huffingtonpost.com/matt-wasson/mountaintop-removal-blow_b_179163.html] | |||
[[Image:Coal mining vs unemployment map.jpg|250px|thumbnail|<center> Correlation between MTR and Poverty Rates in Central Appalachia </center>]] | |||
In 2000, the Appalachian Regional Commission (ARC) classified more than three quarters of Appalachian coal counties as “economically distressed.”[http://www.appvoices.org/index.php?/mtr/economics/] According to a 2005 report from the ARC, employment in the mining industry is one of the best predictors of poverty and other elements of "economic distress" in Central Appalachia. An excerpt from the study states: "Of all the regions in this analysis, Central Appalachia has been one of the poorest performers in relation to the ARC's economic distress measure over time. Furthermore, and unlike all other regions in the U.S., current and persistent economic distress within the Central Appalachian Region has been associated with employment in the mining industry, particularly coal mining."[http://www.huffingtonpost.com/matt-wasson/mountaintop-removal-blow_b_179163.html] But it is more than just "coal mining" that is the problem - mountaintop removal specifically destroys far more jobs than it creates. The counties where mountaintop removal occurs are among the poorest in the nation, with high unemployment rates and rapidly dwindling populations. Central Appalachia has the highest rates associated with persistent poverty in the nation; 17% of the population in Central Appalachia lives below the poverty line, as opposed to 13% nationally.[http://serendip.brynmawr.edu/local/scisoc/environment/seniorsem03/mtr.pdf] | |||
Mountaintop removal is not only the cause of severe unemployment, but it also destroys the potential for alternate economic growth. The EPA notes: “West Virginia's waterways are among the state's most valuable tourist attractions. Canoeists and fishermen come for the pleasures of rivers... The valley fills bury stream beds and contaminate streams with sediment from the mines.”[http://www.appvoices.org/index.php?/mtr/economics/] When looking at the southern and central Appalachian region, the evidence is quite clear. Mountain counties in Virginia, West Virginia, North Carolina, and Tennessee that have no coal industry have enjoyed some of the greatest economic growth and property value increases in the country over the past few decades.[http://www.appvoices.org/index.php?/mtr/economics/] Due to the booming economy built around tourism, for example, Watauga County in North Carolina has maintained one of the lowest unemployment rates of all 100 North Carolina counties in the past few years. In contrast, the coal-producing counties to the north of Watauga County suffer some of the highest unemployment rates, lowest education rates, and highest poverty in the nation.[http://www.appvoices.org/index.php?/mtr/economics/] In the biggest coal producing state in Appalachia, West Virginia, tourism already contributes more to the economy, and creates far more jobs, than the coal industry and has been doing so for more than a decade.[http://www.appvoices.org/index.php?/mtr/economics/] | |||
Due to the advancement in technology, which led to the large decrease in employment, mountaintop removal has become the most efficient method of mining; currently it costs $15 to produce a ton of coal via mountaintop removal, and $27 to produce a ton of coal via underground mining, so almost half as much per ton of coal.[http://serendip.brynmawr.edu/local/scisoc/environment/seniorsem03/mtr.pdf] Also, the annual production value of coal in the United States is $19,599,200,000.[http://serendip.brynmawr.edu/local/scisoc/environment/seniorsem03/mtr.pdf] Because of the drastic decrease in employment, most of this substantial increase in revenue, created by cheaper production via mountaintop removal and an overall increase in production, is leaving the counties in Appalachia in which the coal is being mined and is going to the companies that utilize the process of mountaintop removal. So, mountaintop removal is harming local economies and has brought Appalachia much unemployment and poverty. | |||
==Alternatives to Mountaintop Removal== | |||
While mountaintop removal mining is a one of the most profitable methods of extracting coal, there are less environmentally damaging methods of mining. The four less environmentally damaging methods of coal mining are shaft mines, slope mines, drift mines and open-pit mining. Additionally, there are numerous other forms of energy that can be substituted for coal as an energy source. | While mountaintop removal mining is a one of the most profitable methods of extracting coal, there are less environmentally damaging methods of mining. The four less environmentally damaging methods of coal mining are shaft mines, slope mines, drift mines and open-pit mining. Additionally, there are numerous other forms of energy that can be substituted for coal as an energy source. | ||
====Coal Mining==== | ====Coal Mining==== | ||
There are five main types of mining operations used to extract coal from the earth – shaft mines, slope mines, drift mines, open-pit mining and mountain top removal mining. The first three types are used to extract coal from areas more than 100 feet underground [http://www.coalwoodwestvirginia.com/coal_mining.htm]. Instead of mountain top mining, coal companies could extract coal using one of these four methods. | |||
[[Image:AlternativesToMountaintopRemoval.jpg|thumbnail]] | |||
=====Shaft Mines===== | |||
[[Image:AlternativesToMountaintopRemoval.jpg|225px|thumbnail|right|<center> Alternative mining methods </center>]] | |||
Shaft mining utilizes two vertical shafts to reach coal deep in the ground [http://www.coalwoodwestvirginia.com/coal_mining.htm]. It is the deepest form of underground mining and the most common type of mining shown in films.[http://library.thinkquest.org/05aug/00461/shaft.htm] | |||
=====Slope Mines===== | |||
Slope mining, usually not as deep as the other forms of mining[http://www.umwa.org/index.php?q=content/types-underground-coal-mines], utilizes angled shafts to reach coal that has either been tilted or folded in the Earth’s crust.[http://www.coalwoodwestvirginia.com/coal_mining.htm] | |||
=====Drift Mines===== | |||
Drift mines have “horizontal entries into the coal seam from the hillside.”[http://www.umwa.org/index.php?q=content/types-underground-coal-mines] | |||
=====Open-cast Mines===== | |||
Open-cast mining, also called “open-pit mining,” involves the removal of the surface layers of mountains from top to bottom.[http://www.coalwoodwestvirginia.com/coal_mining.htm] | |||
====Other Energy Alternatives==== | ====Other Energy Alternatives==== | ||
=====Corn-based Ethanol===== | |||
While corn-based ethanol appears to be a good energy source because countries can grow it in their own “backyard,” it is not as beneficial as many people believe according to a report by [http://www.pnas.org/content/103/30/11206.full.pdf+html Hill et. al.]. Even if all US corn <i>and</i> soybean production went towards making biofuels, the two of them combined would only provide 12% of gasoline and 6% of diesel demanded annually. In addition, the net energy balance for corn grain ethanol is small providing only 25% more energy than required for its production. Also, according to the report by [http://www.pnas.org/content/103/30/11206.full.pdf+html Hill et. al.], as of 2005 corn-based ethanol was not competitive with petroleum-based fuels without subsidies and as a result, is not an economically efficient alternative for most consumers. | |||
Relative to the fossil fuels corn-based ethanol would displace, using corn-based ethanol as an energy source would reduce green house gas emissions by 12%. On the other hand, corn production has negative environmental impacts such as an increased amount of nitrogen and phosphorous in the surrounding ecosystems. One of the most widely reported and negative effects of nitrogen is that in large quantities nitrogen can cause “dead zones” such as the one in the [http://en.wikipedia.org/wiki/Gulf_Of_Mexico#Pollution Gulf of Mexico] [http://www.pnas.org/content/103/30/11206.full.pdf+html]. | |||
=====Nuclear Power===== | =====Nuclear Power===== | ||
According to the | [[Image:Nuclear Energy.jpg|thumb|<center>Nuclear Power Plant</center>]] | ||
According to the [http://www.nei.org/keyissues/reliableandaffordableenergy/ Nuclear Energy Institute (NEI)], [http://en.wikipedia.org/wiki/Nuclear_power nuclear power] is the lowest cost producer of base load energy. Nuclear power is not subject to unreliable weather or climate conditions, unpredictable cost fluctuations or dependence on foreign suppliers. Furthermore, the NEI states that nuclear plants produce nearly 20 percent of the United State’s electricity and has the ability to provide a larger share of the US energy market. While nuclear power is appealing to the NEI, environmentalist group [http://www.greenpeace.org/international/campaigns/nuclear Greenpeace] is staunchly opposed to nuclear energy. In their own words, “Greenpeace has always fought - and will continue to fight - vigorously against nuclear power because it is an unacceptable risk to the environment and to humanity.” In addition, Greenpeace has three main concerns about nuclear energy – the safety of nuclear power, the radioactive spent fuel rods and their storage, and weapons proliferation.[http://www.greenpeace.org/international/campaigns/nuclear]. | |||
=====Oil===== | |||
According to the [http://www.energy.gov/energysources/oil.htm US Department of Energy (USDOE)], “oil is the lifeblood of America’s economy.” Currently, it supplies the United States of America with 40% of its total energy demands and 99% of the fuel used in automobiles. Oil is considered to be plentiful and relatively affordable when compared to other energy sources available today. | |||
On the other hand, one must also consider the negative effects of oil. For example, offshore oil exploration (one of the many different types of oil exploration) can cause a variety of environmental problems[http://www.crownminerals.govt.nz/cms/pdf-library/petroleum-conferences-1/1989-petroleum-conference-proceedings/engelhardt-669-kb-pdf]. Some are listed below: | |||
#Discharge of toxic drilling fluids used on machinery | |||
#Oil spills | |||
#Operational noise that can disturb [http://en.wikipedia.org/wiki/Fauna fauna] | |||
#Degradation of beaches | |||
#Loss of habitat for [http://en.wikipedia.org/wiki/Flora_(plants) flora]and fauna | |||
[[Image:Oil spill sign THIS ONE.jpg|150px|thumb|left|San Francisco Bay November 2007]] | |||
According to the [http://toxics.usgs.gov/highlights/ph20.html United States Geological Survey (USGS)], drilling for oil on land creates large volumes of water that is of “undesirable quality known as produced water.” Furthermore, the traditional form of drilling for oil on land masses (vs. offshore drilling) has negative effects on ecosystems: [http://www.crownminerals.govt.nz/cms/pdf-library/petroleum-conferences-1/1989-petroleum-conference-proceedings/engelhardt-669-kb-pdf] | |||
#Discharge of drilling muds and solids, specifically [http://www.halliburton.com/ps/default.aspx?navid=136&pageid=73&prodgrpid=HAL1MAT%3A%3A235 viscosifiers], [http://www.halliburton.com/ps/default.aspx?navid=135&pageid=72&prodgrpid=MSE%3A%3A1053028624017913 thinners and deflocculants],[http://en.wikipedia.org/wiki/Polymer polymers] and lubricants | |||
#Accidental discharge of unrefined petroleum | |||
#Negative effects on the surrounding flora and fauna | |||
<!--DO NOT DELETE THE SPACE BETWEEN OIL AND SOLAR POWER - IT IS NECESSARY SO THAT THE "SOLAR POWER" TITLE DOES NOT START RIGHT NEXT TO THE OIL SPILL SIGN. AND THERE IS NO NEED TO DELETE THIS COMMENT SINCE I PUT IT AS AN "INVISIBLE" COMMENT - IT DOESN'T SHOW UP WHEN WE CLICK "SAVE" <==ANDREI --> | |||
=====Solar Power===== | |||
One of the advantages of solar power is that its energy source – the [http://en.wikipedia.org/wiki/Sun Sun] – is free and accessible to everyone. In 2007, solar power supplied approximately 1% of the US energy supply[http://www.eia.doe.gov/cneaf/solar.renewables/page/trends/rentrends.html]. One of the biggest problems with solar power is that, currently, it does not provide enough energy in large cities where there are more people living per square mile than suburban or rural areas. In addition, high installation costs and long payback time may deter some potential buyers from investing in solar power. | |||
While solar power has been seen as more expensive than traditional energy sources, a report by the [http://www.nrel.gov/ National Renewable Energy Laboratory]suggests that on a large scale (4,000 MW), concentrated solar power (CSP) plants “would be a beneficial addition to California’s energy supply." The report, [http://www.nrel.gov/docs/fy06osti/39291.pdf "Economic, Energy and Environmental Benefits of Concentrating Solar Power in California"], also states that a CSP plant in [http://en.wikipedia.org/wiki/California California] would offset at least 300 tons of [http://en.wikipedia.org/wiki/NOx NOx] emissions, 180 tons of [http://en.wikipedia.org/wiki/Carbon_Monoxide CO] emissions and 7.6 million tons of [http://en.wikipedia.org/wiki/CO2 CO2] annually. | |||
A CSP plant also provides permanent jobs, unlike the petroleum and natural gas industries. Furthermore, CSP plants “are a fixed-cost generation resource [that] offer a physical hedge against the fluctuating cost of electricity produced with natural gas” [http://www.nrel.gov/docs/fy06osti/39291.pdf]. According to the report, for each dollar spent on CSP plants, there is a total impact of approximately $1.40 to gross state output for each dollar invested. On the contrary, there is a total impact of only $0.90 for each dollar invested in natural gas fueled generation [http://www.nrel.gov/docs/fy06osti/39291.pdf]. | |||
=====Wind===== | =====Wind===== | ||
The report, | [[Image:WindTurbine.jpg|thumb|<center>Wind Turbines</center>]] | ||
The report, [http://www.coalriverwind.org/wp-content/uploads/2008/12/coalvswindoncoalrivermtn-final.pdf The Long-Term Economic Benefits of Wind Versus Mountaintop Removal Coal on Coal River Mountain, West Virginia], examined the economic benefits that wind power could have in West Virginia. It calculated the local economic benefits based on number of jobs, earnings and economic output. In addition, the study examined costs due to increased death and illnesses from mountaintop removal mining and the cost of local environmental problems in the future. In addition, it discusses that wind power is not without environmental impact. Wind turbines will possibly kill birds and bats flying through the area. The report concluded that wind power is preferable to mountaintop removal in Raleigh County. The study claims that the economic benefits of mountaintop removal would end 17 years after mining operations ceased, while the environmental and social costs of mountaintop removal would continue to last. In economic terms, mountaintop removal mining provides $36,000 per year in coal severances paid to Raleigh County, whereas a wind farm would generate $1.74 million in local property taxes annually [http://www.coalriverwind.org/wp-content/uploads/2008/12/coalvswindoncoalrivermtn-final.pdf]. | |||
According to the [http://www.awea.org/pubs/factsheets/WindPowerToday_2007.pdf American Wind Energy Association (AWEA)], wind power “can be harnessed to be a non-polluting, never-ending source of energy” to meet the world’s energy needs. Furthermore, the AWEA states that in good wind areas over 25 years, a large wind turbine project may offer cheaper energy than any other new power plant. In addition, concerns about the reliability of wind power are not supported with current evidence. In Demark, where over 20% of its energy comes from wind, there has been no loss of reliability of the electrical grid and there has been no need for expensive equipment or energy storage. | |||
==Suggested Economic Policy== | |||
As with many fossil fuels, mountaintop removal continues on such a large scale because the true social costs of doing so are not taken into account. The report by Downstream Strategies concluded that because of the externalities involved with mountaintop removal, including the environmental and health effects, a single mountaintop removal mine will lose $600 million dollars over its lifetime. Many of these costs may come in health and environmental costs after the benefits stop (once the mine closed). This deficit is only the calculated costs of a single mine and it is quite apparent that if this value is multiplied times the large unknown number of MTR mines in Appalachia, society is losing a great amount of money on mountaintop removal. | |||
First off, MTR companies would have to be made to pay the full social costs of their mining. It is only because these costs are completely ignored currently that mountaintop removal is able to continue on such a large scale. If these costs are taken into consideration by both companies and, then in connection, by costumers, it should be enough of an incentive for MTR to be scaled back to an efficient level. Government could achieve this by placing a tax, which roughly equated to the social costs of a mine, on mountaintop removal. The tax income could be used for environmental and health mitigation measures for the mountaintop removal mining which still occurred after the tax. This way the government would make money on MTR rather than losing it through damage to the environment and to public health. | |||
[[Image:Wind-power-cost.gif|275px|thumbnail|<center> The cost of wind power has already fallen significantly over the years</center>]] | |||
A point to take into consideration, however, is that a large part of the social costs of MTR are health damages. A health standard may have to be taken into consideration in this case due to ethical issues of equating a person's quality of life to the monetary value of medical costs. If the health standard is taken into consideration, the health damages of MTR should be weighed more heavily in a cost-benefit analysis than just pure monetary benefits (or costs). This may call for an even greater tax on MTR to account for the weighted costs or perhaps a ban on MTR altogether due to the high costs to quality of life. | |||
As the Downstream Strategies report concluded that wind power would be a preferable option to mountaintop removal in Raleigh County, there is no reason why this could not be implemented in other parts of Appalachia. The initial costs of set-up would most likely pose the greatest challenge in creating wind farms in place of mountaintop removal. Thus, government could also subsidize or give tax breaks for the building of wind farms in order to encourage clean technology. Wind farms could easily account for jobs lost to MTR and provide a switch in the energy sector of the economy. A tax on MTR would probably encourage some cross over to clean technology anyway, but subsidies from the government for the initial costs may help this sector get off the ground as it is an economy of scale. | |||
==References== | ==References== | ||
<!-- ONCE AGAIN - THIS IS A HIDDEN MESSAGE, SO THERE IS NO NEED TO DELETE IT: Here are my sources - they are in alphabetical order. I have cited them the same way Wikipedia does citation on their regular website. Please make sure that when you add your sources, they are in alphabetical order- Andrei --> | |||
*American Bird Conservancy (2007), "Mountaintop Removal/Valley Fill Coal Mining Impacts on Birds" http://www.abcbirds.org/conservationissues/threats/energyproduction/mountaintop.html | |||
*American Energy Wind Association (2007), "Wind Power Today" http://www.awea.org/pubs/factsheets/WindPowerToday_2007.pdf | |||
*Appalachian Voices (2007), "Economics of Mountaintop Removal" http://www.appvoices.org/index.php?/mtr/economics/ | |||
*Appalachian Voices (2007), "Mountaintop Removal Coal Mining" http://www.appvoices.org/index.php?/site/mtr_overview/ | |||
*Appalachian Voices (2007), "What are the Environmental Impacts of Mountaintop Removal?" http://www.appvoices.org/index.php?/mtr/environmental_impacts/ | |||
*Arbel, Shani (2003), "Mountaintop Removal Mining" http://serendip.brynmawr.edu/local/scisoc/environment/seniorsem03/mtr.pdf | |||
*Boyle, Katherine (2009), "EPA to review mountaintop removal's impact on water quality" http://www.nytimes.com/gwire/2009/03/24/24greenwire-epa-halts-mountaintop-permitting-will-review-w-10274.html | |||
*Coalwood West Virginia, “Types of Coal Mines” http://www.coalwoodwestvirginia.com/coal_mining.htm | |||
Downstream Strategies (2008), "The Long-Term Economic Benefits of Wind Versus Mountaintop Removal Coal on Coal River Mountain, West Virginia" http://www.coalriverwind.org/wp-content/uploads/2008/12/coalvswindoncoalrivermtn-final.pdf | *Downstream Strategies (2008), "The Long-Term Economic Benefits of Wind Versus Mountaintop Removal Coal on Coal River Mountain, West Virginia" http://www.coalriverwind.org/wp-content/uploads/2008/12/coalvswindoncoalrivermtn-final.pdf | ||
*Energy Information Administration (2007), "Renewable Energy Trends in Consumption and Electricity" http://www.eia.doe.gov/cneaf/solar.renewables/page/trends/rentrends.html | |||
*Engelhardt, F. Rainer. "Environmental Effects of Petroleum Exploration: A Practical Perspective" http://www.crownminerals.govt.nz/cms/pdf-library/petroleum-conferences-1/1989-petroleum-conference-proceedings/engelhardt-669-kb-pdf | |||
*Greenpeace, "End the Nuclear Age" http://www.greenpeace.org/international/campaigns/nuclear | |||
*Hill, Nelson, Tilman, Polasky, & Tiffany (2006), "Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels" http://www.pnas.org/content/103/30/11206.full.pdf+html | |||
== | *Johannsen, Kristin (2005), "Dirty Money - The Economy of Coal" http://windpub.com/dirtymoney.htm | ||
*Lindsey, Rebecca (2007), "Coal Controversy in Appalachia" http://earthobservatory.nasa.gov/Features/MountaintopRemoval/ | |||
*McQuaid, John (2009), "Mining the Mountains" http://www.smithsonianmag.com/science-nature/36176804.html | |||
*"Mid-Atlantic Mountaintop Mining", EPA http://www.epa.gov/region3/mtntop/index.htm | |||
*"Mining Operations as Nonpoint Source Pollution" (2009), EPA http://www.epa.gov/reg3wapd/nps/mining | |||
*"Mountaintop Mining Fact Book" (2009), National Mining Association, www.nma.org/pdf/fact_sheets/mtm.pdf | |||
*"Mountaintop removal mining" http://en.wikipedia.org/wiki/Mountaintop_removal | |||
*National Renewable Energy Labratory (2006), "Economic, Energy, and Environmental Benefitsof Concentrating Solar Power in California" http://www.nrel.gov/docs/fy06osti/39291.pdf | |||
*Nuclear Energy Institute (2009), "Reliable and Affordable Energy" http://www.nei.org/keyissues/reliableandaffordableenergy/ | |||
*Ohio Valley Environmental Coalition, “<i>New York Times</i> illustration of mountaintop removal process” http://www.ohvec.org/issues/mountaintop_removal/articles/2004_08_09.html | |||
*Pond, Gregory J., Margaret Passmore, Frank A. Borsuk, Lou Reynolds, and Carole J. Rose (2008), "Downstream Effects of Mountaintop Coal Mining: Comparing Biological Conditions Using Family- and Genus-level Macroinvertebrate Bioassessment Tools." The North American Benthological Society. | |||
*Sierra Club, "Mountaintop Removal Coal Mining: Destroying Appalachia One Mountain At a Time," http://www.sierraclub.org/MTR/ | |||
*Sustainable Forests Partnership, "How is Forest Fragmentation Affecting You?" http://sfp.cas.psu.edu/fragmentation/how.htm | |||
*ThinkQuest, “Shaft Mining” http://library.thinkquest.org/05aug/00461/shaft.htm | |||
*United Mine Workers of America, “Types of Underground Coal Mines” http://www.umwa.org/index.php?q=content/types-underground-coal-mines | |||
*United States Department of Energy, "Oil" http://www.energy.gov/energysources/oil.htm | |||
*United States Environmental Protection Agency, "Mid-Atlantic Mountaintop Mining" http://www.epa.gov/Region3/mtntop/#impacts | |||
*United States Geological Survey (2007), "Oil Wells Produce More Than Just Oil - Environmental Impact of Produced Water" http://toxics.usgs.gov/highlights/ph20.html | |||
*Wasson, Matt (2009), "Mountaintop Removal Blow-Back" http://www.huffingtonpost.com/matt-wasson/mountaintop-removal-blow_b_179163.html | |||
*Wise Uranium Project (2008), "The Inez Coal Tailings Dam Failure (Kentucky USA)" http://www.wise-uranium.org/mdafin.html | |||
*Zellmer, Sandi (2005), Center for Progressive Reform, "Mountaintop Removal" http://www.progressiveregulation.org/perspectives/mt_top.cfm | |||
<b>Images:</b> | |||
*Alternative mining methods to mountaintop removal mining. http://images.encarta.msn.com/xrefmedia/zencmed/targets/illus/ilt/T629100A.gif | |||
*Clean stream/polluted stream image courtesy of http://endmtr.com/2008/09/21/pollution-continues-long-after-mining-has-ended/ | |||
*Coal Production and Unemployment in West Virginia graph courtesy of http://www.appvoices.org/index.php?/mtr/economics/ | |||
*Contaminated Drinking Water in Tennessee courtesy of [http://pro.corbis.com/search/Enlargement.aspx?CID=isg&mediauid=%7B3BAC60D5-44FC-4C92-9171-A239F425F984%7D Corbis] | |||
*Mountaintop Removal image courtesy of http://www.climatechange.umaine.edu/Research/Contrib/html/22.html | |||
*Mountaintop Removal Permits image of EPA Administrator Lisa Jackson courtesy of [http://images.google.com/imgres?imgurl=http://blogs.wvgazette.com/coaltattoo/files/2009/03/large_ljackson.JPG&imgrefurl=http://blogs.wvgazette.com/coaltattoo/2009/03/24/mountaintop-removal-moratorium-not/&usg=__WjxaijMNM9Xta4GwhfQUF8pn66s=&h=341&w=453&sz=27&hl=en&start=11&tbnid=5ruyGNCfNKexmM:&tbnh=96&tbnw=127&prev=/images%3Fq%3Dnational%2Bmining%2Bassociation%26gbv%3D2%26hl%3Den[West Virginia Gazette Blog]] | |||
*Nuclear Power image courtesy of http://www.flickr.com/photos/lungstruck/2303642958/ | |||
*Number of Coal Miners vs. Amount of Coal Mined graph courtesy of http://www.appvoices.org/index.php?/mtr/economics/ | |||
*Office of Surface Mining seal courtesy of [http://images.google.com/imgres?imgurl=http://upload.wikimedia.org/wikipedia/commons/8/83/Office_of_Surface_Mining_seal.jpg&imgrefurl=http://en.wikipedia.org/wiki/Office_of_Surface_Mining,_Reclamation,_and_Enforcement&usg=__xnJh51ls88Jz5o6hbTDnBrGHZ6s=&h=140&w=136&sz=31&hl=en&start=1&tbnid=ytz13eSQlmFM8M:&tbnh=93&tbnw=90&prev=/images%3Fq%3Doffice%2Bof%2Bsurface%2Bmining%26gbv%3D2%26hl%3Den Wikepedia] | |||
*Poverty and Strip Mining in Appalachia image courtesy of http://www.huffingtonpost.com/matt-wasson/mountaintop-removal-blow_b_179163.html | |||
*San Francisco oil spill image courtesy of: http://www.flickr.com/photos/taylar/2039092275/ | |||
*Sludge dam break, Martin County image courtesy of: http://sfp.cas.psu.edu/fragmentation/how.htm | |||
*Valley Fill image courtesy of: http://www.flickr.com/photos/nrdc_media/2965230246/ | |||
*Wind Energy Graph image courtesy of: http://www.grinningplanet.com/2004/12-14/wind-power-wind-energy-article.htm | |||
*Wind Turbines image courtesy of http://www.flickr.com/ | |||
Vernon, Andrei | ==Authors== | ||
Applestein, Cara; Morgan, Arleigh; Rogers, Kelly; Vernon, Andrei |
Latest revision as of 02:47, 4 May 2009
Mountaintop Removal Mining
History
Demand for coal in the United States increased substantially in the 1970’s due to the 1973 and 1979 energy crises.[1] This created incentives to conduct a more efficient form of coal mining than traditional underground mining methods. This triggered the first widespread use of mountaintop removal (MTR), which involves far fewer workers than traditional underground mining. Its popularity spread into the 1990’s, when MTR proved to be an efficient way of retrieving low-sulfur coal, which came into high demand as a result of the U.S. Clean Air Act tightening emissions limits on high-sulfur coal processing.[2] MTR has continued to expand into the 2000’s due to increasing calls for energy independence and clean coal technologies.[3] Coal companies in the United States continue to use MTR mining because it allows for almost complete recovery of coal seams while increasing profits - by reducing the number of workers required to a fraction of what traditional underground mining methods require.[4]
Mountaintop Removal occurs primarily throughout the Appalachian Mountains in Appalachia. The states most affected are Virginia, West Virginia, Kentucky, Tennessee, and North Carolina, with West Virginia and Eastern Kentucky feeling the largest impact. The United States Environmental Protection Agency (EPA) estimates that MTR will lead to 1.4 million acres across Appalachia being mined by 2010.[5]
Process
- Trees are clear cut.
- Explosives are used to loosen the rocks and topsoil.
- Huge shovels dig into the topsoil and trucks haul the topsoil away.
- A dragline digs into the mountain to expose the coal.
- The dragline and large trucks dump the topsoil and rocks into "valley fills."
- Land is reclaimed. [6]
Political Climate & Laws
History
The most important federal laws that regulate mountaintop removal in the United States are the Surface Mining Control and Reclamation Act (SMCRA), the Clean Water Act (CWA), the Clean Air Act, the Endangered Species Act (ESA), and the Federal Mine Safety and Health Act. The specific Congressional authorization of mountaintop removal begain with the SMCRA in 1977. This legislation created the Office of Surface Mining Reclamation and Enforecement (OSM), which was in charge of establishing a program nationwide to protect society from the bad impacts of coal mining. The SMCRA established that coal mining must be consistent with specific environmental performance standards, from the beginning of the mining operation, throughout the entire project to its completion. It also established a permit system in which mining companies must complete permit applications containing information about the proposed operation and the company itself. The application must also include an environmental analysis of how compliance will be met.[7] The Clean Water Act also regulates mining operations, specifically regarding the operations discharges of pollutants to streams from valley fills and the valley fill itself.[8] Mountaintop removal violators of the Clean Water Act face severe penalties.
For example, in February 2009, Patriot Coal Company, one of the largest US coal mining companies paid $6.5 million to settle violations of the Clean Water Act. This was the third largest penalty ever paid for discharge violations in a federal Clean Water Act case. The company agreed to prevent future violations and to perform environmental projects as a result of the failure of their previous standards. [9]
Bragg v. Robertson
A settlement agreement after the court case of Bragg v. Robertson, Civ. No. 23:98-0636 (S.D. W.V.) provoked a joint programmatic environmental impact statement done by the Environmental Protection Agency, the US Army Corps of Engineers, the US Department of the Interior's Office of Surface Mining and Fish & Wildlife Service, and the West Virginia Department of Environmental Protection. Patricia Bragg was a resident of a former coal camp in West Virginia, and she alleged that the West Virginia State agencies had failed to enforce environmental laws regarding mountaintop removal. She also alleged that the DEP had engaged in a "pattern and practice of approving buffer zone variances that unlawfully allowed the burial of substantial parts of intermittent and perennial streams." She was arguing that the concept of valley fills violated the standard already set by the DEP. The case was heard by Cheif Judge Charles Haden, who determined that valley fills violated the former standards. His decision was reversed by the Fourth Circuit Court of Appeals, concluding that West Virginia could not be prosecuted under the doctrine of sovereign immunity.[10] Regardless of the ruling, the impact of this court case was the join programmatic environmental impact statement. This impact statement evaluated options for improving different agency programs to reduce the harmful environmental impacts of mountaintop removal in Appalachia. This was an approach by multiple agencies to coordinate regulation of mountaintop removal, which was a necessary step to improving the environmental standards of mountaintop removal. [11]
Current Political Status
As of late March 2009, the EPA decided to review permitting for mountaintop removal in two projects in West Virginia and Kentucky. The EPA plans to asses the impacts of these projects on water quality and aquatic life. Groups like the Sierra Club praise this decision, as it is likely to lead to an examination of an entire industry's practices. Groups such as the National Mining Association think that the EPA's decision jeopardizes thousands of jobs.[12]
This decision comes at a time when there is great dispute over the existence of mountaintop removal. There is a predicament amongst states, especially those in Appalachia, which face poverty and low per capita income. For tens of years, mining has been the only industry in small towns across Appalachia. Due to the environmental harm of mountaintop removal, there has been a coalition of interests to put mountaintop removal to an end. Additionally, political establishment in these states have been "unwavering" in their support for the coal industry, making reform difficult.[13]
Little policy initiative has been made by President Obama on mountaintop removal. During his campaign, he expressed "serious concerns about the practice" but would not advocate for a mountaintop removal ban, like his opponent Senator McCain did.[14]
Health Effects
Though mountaintop removal is efficient in terms of extracting coal, according to the Center for Progressive Reform, mountaintop removal has high social costs in terms of human health impacts. When mountains are flattened, the displaced land is put into valleys, which results in "valley fills." These valley fills result in moving soil which fills streams and rivers. This results in flash floods, polluted drinking water, thick dust, and never ending noise for residents. [15]
According to the Sierra Club, the material from mountain tops and the waste created from coal mining are also put into artifically made waste ponds and lakes. These ponds are typically located very close to community centers, schools, businesses, or homes, putting community members at risk. In 1972 one of these ponds failed in Buffalo Creek, West Virginia, causing a flood. The flood killed 125 people, injured 1,000 people, and left 4,000 people homeless. In 2000, a similar pond failed in Inez, KY, putting 300 million gallons of pollutants into waterways. The danger of these waste ponds failing still exists today throughout Appalachia. For example, currently in Sundial, WV there is a waste lake only 400 yeards from an elementary school. [16]
According to the Smithsonian, the mountain top mining waste creates harmful chemical compounds that would not have otherwise been released. These compounds and metals include lead, aluminim, chromium, manganese, and selenium. Ben Stout, a biologist at Wheeling Jesuit University found barium and arsenic within the coal mining waste in amounts and concentrations that almost qualify as hazardous. Other scientists, professor Michael Hendryx at West Virginia University and Melissa Ahern of Washington State University studied mortality rates at mining sites in West Virginia. They adjusted other factors (such as poverty and occupational illness) and found significantly higher elevations in death for chronic lung, heart and kidney disease, and lung and digestive-system cancer. The number of people who died overall was higher in these areas as well.[17]
Ecological Effects
Mountaintop removal can have devastating environmental impacts on the ecosystem. In order to do mountaintop removal, it is necessary to cut tracts of forest. The forest may not be able to come back easily in areas that have been cut because the soils become compacted (EPA, 2009). Due to the cutting, forests can become fragmented (EPA, 2009) which is a serious problem for biodiversity in an area. Fragmentation breaks up forests into many pieces rather than keeping a large tract intact together. As a result, there is more exterior forest area rather than interior forests which can cause declines in certain species, such as songbirds, that rely on inner areas of the forest (Sustainable Forests Partnership, 2008). This can cause an overall decline in biodiversity and make ecosystems more susceptible to invasive species (Sustainable Forests Partnership, 2008). The change in ecosystem make-up on reclaimed mine land can also change the species composition. Grassland birds become more common and amphibians become less common (EPA, 2009).[18] Several bird species that rely on mature interior forests for nesting have greatly decreased in population (American Bird Conservancy, 2007). The clearing of forests permanently affects their habitat and may make conservation efforts more difficult (American Bird Conservancy, 2007).
Mountaintop removal is also responsible to for a large amount of degradation to streams. In a 12-million-acre area in east Kentucky, south West Virginia, west Virginia, and east Tennessee, 1,200 miles of streams have been damaged by mountaintop removal (Lindsey, 2007). When a valley fill is done, they can sometimes can completely bury and destroy the stream all together (EPA, 2009). Even if when streams are not completely covered by stream fills, they can still suffer extreme degradation from the pollution of mining. Studies of impacted streams have shown an increase in many minerals such as zinc, sodium, selenium, and sulfate which can all have negative impacts on organisms in streams (EPA, 2009). Again, these minerals can decrease biodiversity by killing off more sensitive species. A study done by Pond, Passmore, Borsuk, Reynolds, and Rose found that there was a link between mountaintop removal and a degradation in the biological community of macroinvertebrates in streams. Many toxic elements can also be found in concentrations greater than government standards in streams near mountaintop removal sites (Lindsey, 2007). Valley fills can greatly increase the severity of flash flooding (Lindsey, 2007).
Sludge dams, in which companies dump the rubble and wastes of taking the tops of mountains, can also contribute to negative environmental impacts. In 2000, a sludge dam broke in Martin County, Kentucky and miles of waterways were flooded with 300 million gallons of toxic sludge (many times more than the Valdez oil spill) (Appalachian Voices, 2007). The disaster killed all aquatic life within 70 miles of the break. Towns along the Tug fork of Big Sandy River could not drink from their tap water. The spill contained several toxic elements including arsenic, mercury, lead, copper and chromium (Wise Uranium Project 2008). The estimates of the clean up costs were as high as $60 million (Wise Uranium Project 2008). The Martin County Coal Corp claimed that the break was an "act of god" (Wise Uranium Project 2008). There are still 45 sludge dams in West Virginia (Appalachian Voices, 2007) that are quite a high risk for breaking which could potentially be responsible for more environmental disasters such as they one in Martin County.
Usually reclamation efforts for mountain-top removal involve companies planting non-native grasses on destroyed slopes. This is not particularly effective because it changes the forest ecosystem for more of a grassland ecosystem. Birds that nest in forests, such as Cerulean Warblers, will not use these grassland areas (American Bird Conservancy, 2007). Companies could reforest this land which would probably somewhat decrease the effects of loss of biodiversity to a small degree (American Bird Conservancy, 2007). However, companies rarely do this as it is more expensive and not required by law. The only small benefit to reclamation efforts is that they provide early successional forest areas which provide habitat for some high conservancy species which require these areas such as the Henslow's Sparrow, Golden-winged Warbler, American Woodcock, and Northern Bobwhite (American Bird Conservancy, 2007). However, these areas can easily be created in other ways using good forest management techniques (which don't involve fragmentation).
Employment & Economic Costs
What used to take a few hundred miners a decade to do, now takes a dozen equipment operators and blasting technicians only a couple of years. Over the past few decades in Appalachia, there has been a drastic decrease in employment in the coal mining industry. This is partly due to new technology, but mostly due to the increase in mountaintop removal as opposed to underground mining.
According to the Bureau of Labor Statistics, in the early 1950’s there were between 125,000 and 145,000 miners employed in West Virginia; in 2004 there were just over 16,000. And during this same time period, coal production rose 32%.[19] Overall, in the Appalachian region, coal mining productivity went up an average of 4.9% every year between 1988 and 1997, and it remained 52% higher in 2003 compared to 1988,[20] while employment in the mining industry in Appalachia has drastically decreased since then. In 1979, there were 35,902 mining jobs in Eastern Kentucky and by 2003 there were only 13,036.[21] This drastic decrease in employment has been attributed to the use of mountaintop removal mining as opposed to underground mining. With the use of current technologies, underground mines employ 1.5 times as many miners per ton produced as surface mines do.[22]
In 2000, the Appalachian Regional Commission (ARC) classified more than three quarters of Appalachian coal counties as “economically distressed.”[23] According to a 2005 report from the ARC, employment in the mining industry is one of the best predictors of poverty and other elements of "economic distress" in Central Appalachia. An excerpt from the study states: "Of all the regions in this analysis, Central Appalachia has been one of the poorest performers in relation to the ARC's economic distress measure over time. Furthermore, and unlike all other regions in the U.S., current and persistent economic distress within the Central Appalachian Region has been associated with employment in the mining industry, particularly coal mining."[24] But it is more than just "coal mining" that is the problem - mountaintop removal specifically destroys far more jobs than it creates. The counties where mountaintop removal occurs are among the poorest in the nation, with high unemployment rates and rapidly dwindling populations. Central Appalachia has the highest rates associated with persistent poverty in the nation; 17% of the population in Central Appalachia lives below the poverty line, as opposed to 13% nationally.[25]
Mountaintop removal is not only the cause of severe unemployment, but it also destroys the potential for alternate economic growth. The EPA notes: “West Virginia's waterways are among the state's most valuable tourist attractions. Canoeists and fishermen come for the pleasures of rivers... The valley fills bury stream beds and contaminate streams with sediment from the mines.”[26] When looking at the southern and central Appalachian region, the evidence is quite clear. Mountain counties in Virginia, West Virginia, North Carolina, and Tennessee that have no coal industry have enjoyed some of the greatest economic growth and property value increases in the country over the past few decades.[27] Due to the booming economy built around tourism, for example, Watauga County in North Carolina has maintained one of the lowest unemployment rates of all 100 North Carolina counties in the past few years. In contrast, the coal-producing counties to the north of Watauga County suffer some of the highest unemployment rates, lowest education rates, and highest poverty in the nation.[28] In the biggest coal producing state in Appalachia, West Virginia, tourism already contributes more to the economy, and creates far more jobs, than the coal industry and has been doing so for more than a decade.[29]
Due to the advancement in technology, which led to the large decrease in employment, mountaintop removal has become the most efficient method of mining; currently it costs $15 to produce a ton of coal via mountaintop removal, and $27 to produce a ton of coal via underground mining, so almost half as much per ton of coal.[30] Also, the annual production value of coal in the United States is $19,599,200,000.[31] Because of the drastic decrease in employment, most of this substantial increase in revenue, created by cheaper production via mountaintop removal and an overall increase in production, is leaving the counties in Appalachia in which the coal is being mined and is going to the companies that utilize the process of mountaintop removal. So, mountaintop removal is harming local economies and has brought Appalachia much unemployment and poverty.
Alternatives to Mountaintop Removal
While mountaintop removal mining is a one of the most profitable methods of extracting coal, there are less environmentally damaging methods of mining. The four less environmentally damaging methods of coal mining are shaft mines, slope mines, drift mines and open-pit mining. Additionally, there are numerous other forms of energy that can be substituted for coal as an energy source.
Coal Mining
There are five main types of mining operations used to extract coal from the earth – shaft mines, slope mines, drift mines, open-pit mining and mountain top removal mining. The first three types are used to extract coal from areas more than 100 feet underground [32]. Instead of mountain top mining, coal companies could extract coal using one of these four methods.
Shaft Mines
Shaft mining utilizes two vertical shafts to reach coal deep in the ground [33]. It is the deepest form of underground mining and the most common type of mining shown in films.[34]
Slope Mines
Slope mining, usually not as deep as the other forms of mining[35], utilizes angled shafts to reach coal that has either been tilted or folded in the Earth’s crust.[36]
Drift Mines
Drift mines have “horizontal entries into the coal seam from the hillside.”[37]
Open-cast Mines
Open-cast mining, also called “open-pit mining,” involves the removal of the surface layers of mountains from top to bottom.[38]
Other Energy Alternatives
Corn-based Ethanol
While corn-based ethanol appears to be a good energy source because countries can grow it in their own “backyard,” it is not as beneficial as many people believe according to a report by Hill et. al.. Even if all US corn and soybean production went towards making biofuels, the two of them combined would only provide 12% of gasoline and 6% of diesel demanded annually. In addition, the net energy balance for corn grain ethanol is small providing only 25% more energy than required for its production. Also, according to the report by Hill et. al., as of 2005 corn-based ethanol was not competitive with petroleum-based fuels without subsidies and as a result, is not an economically efficient alternative for most consumers.
Relative to the fossil fuels corn-based ethanol would displace, using corn-based ethanol as an energy source would reduce green house gas emissions by 12%. On the other hand, corn production has negative environmental impacts such as an increased amount of nitrogen and phosphorous in the surrounding ecosystems. One of the most widely reported and negative effects of nitrogen is that in large quantities nitrogen can cause “dead zones” such as the one in the Gulf of Mexico [39].
Nuclear Power
According to the Nuclear Energy Institute (NEI), nuclear power is the lowest cost producer of base load energy. Nuclear power is not subject to unreliable weather or climate conditions, unpredictable cost fluctuations or dependence on foreign suppliers. Furthermore, the NEI states that nuclear plants produce nearly 20 percent of the United State’s electricity and has the ability to provide a larger share of the US energy market. While nuclear power is appealing to the NEI, environmentalist group Greenpeace is staunchly opposed to nuclear energy. In their own words, “Greenpeace has always fought - and will continue to fight - vigorously against nuclear power because it is an unacceptable risk to the environment and to humanity.” In addition, Greenpeace has three main concerns about nuclear energy – the safety of nuclear power, the radioactive spent fuel rods and their storage, and weapons proliferation.[40].
Oil
According to the US Department of Energy (USDOE), “oil is the lifeblood of America’s economy.” Currently, it supplies the United States of America with 40% of its total energy demands and 99% of the fuel used in automobiles. Oil is considered to be plentiful and relatively affordable when compared to other energy sources available today.
On the other hand, one must also consider the negative effects of oil. For example, offshore oil exploration (one of the many different types of oil exploration) can cause a variety of environmental problems[41]. Some are listed below:
- Discharge of toxic drilling fluids used on machinery
- Oil spills
- Operational noise that can disturb fauna
- Degradation of beaches
- Loss of habitat for floraand fauna
According to the United States Geological Survey (USGS), drilling for oil on land creates large volumes of water that is of “undesirable quality known as produced water.” Furthermore, the traditional form of drilling for oil on land masses (vs. offshore drilling) has negative effects on ecosystems: [42]
- Discharge of drilling muds and solids, specifically viscosifiers, thinners and deflocculants,polymers and lubricants
- Accidental discharge of unrefined petroleum
- Negative effects on the surrounding flora and fauna
Solar Power
One of the advantages of solar power is that its energy source – the Sun – is free and accessible to everyone. In 2007, solar power supplied approximately 1% of the US energy supply[43]. One of the biggest problems with solar power is that, currently, it does not provide enough energy in large cities where there are more people living per square mile than suburban or rural areas. In addition, high installation costs and long payback time may deter some potential buyers from investing in solar power.
While solar power has been seen as more expensive than traditional energy sources, a report by the National Renewable Energy Laboratorysuggests that on a large scale (4,000 MW), concentrated solar power (CSP) plants “would be a beneficial addition to California’s energy supply." The report, "Economic, Energy and Environmental Benefits of Concentrating Solar Power in California", also states that a CSP plant in California would offset at least 300 tons of NOx emissions, 180 tons of CO emissions and 7.6 million tons of CO2 annually.
A CSP plant also provides permanent jobs, unlike the petroleum and natural gas industries. Furthermore, CSP plants “are a fixed-cost generation resource [that] offer a physical hedge against the fluctuating cost of electricity produced with natural gas” [44]. According to the report, for each dollar spent on CSP plants, there is a total impact of approximately $1.40 to gross state output for each dollar invested. On the contrary, there is a total impact of only $0.90 for each dollar invested in natural gas fueled generation [45].
Wind
The report, The Long-Term Economic Benefits of Wind Versus Mountaintop Removal Coal on Coal River Mountain, West Virginia, examined the economic benefits that wind power could have in West Virginia. It calculated the local economic benefits based on number of jobs, earnings and economic output. In addition, the study examined costs due to increased death and illnesses from mountaintop removal mining and the cost of local environmental problems in the future. In addition, it discusses that wind power is not without environmental impact. Wind turbines will possibly kill birds and bats flying through the area. The report concluded that wind power is preferable to mountaintop removal in Raleigh County. The study claims that the economic benefits of mountaintop removal would end 17 years after mining operations ceased, while the environmental and social costs of mountaintop removal would continue to last. In economic terms, mountaintop removal mining provides $36,000 per year in coal severances paid to Raleigh County, whereas a wind farm would generate $1.74 million in local property taxes annually [46].
According to the American Wind Energy Association (AWEA), wind power “can be harnessed to be a non-polluting, never-ending source of energy” to meet the world’s energy needs. Furthermore, the AWEA states that in good wind areas over 25 years, a large wind turbine project may offer cheaper energy than any other new power plant. In addition, concerns about the reliability of wind power are not supported with current evidence. In Demark, where over 20% of its energy comes from wind, there has been no loss of reliability of the electrical grid and there has been no need for expensive equipment or energy storage.
Suggested Economic Policy
As with many fossil fuels, mountaintop removal continues on such a large scale because the true social costs of doing so are not taken into account. The report by Downstream Strategies concluded that because of the externalities involved with mountaintop removal, including the environmental and health effects, a single mountaintop removal mine will lose $600 million dollars over its lifetime. Many of these costs may come in health and environmental costs after the benefits stop (once the mine closed). This deficit is only the calculated costs of a single mine and it is quite apparent that if this value is multiplied times the large unknown number of MTR mines in Appalachia, society is losing a great amount of money on mountaintop removal.
First off, MTR companies would have to be made to pay the full social costs of their mining. It is only because these costs are completely ignored currently that mountaintop removal is able to continue on such a large scale. If these costs are taken into consideration by both companies and, then in connection, by costumers, it should be enough of an incentive for MTR to be scaled back to an efficient level. Government could achieve this by placing a tax, which roughly equated to the social costs of a mine, on mountaintop removal. The tax income could be used for environmental and health mitigation measures for the mountaintop removal mining which still occurred after the tax. This way the government would make money on MTR rather than losing it through damage to the environment and to public health.
A point to take into consideration, however, is that a large part of the social costs of MTR are health damages. A health standard may have to be taken into consideration in this case due to ethical issues of equating a person's quality of life to the monetary value of medical costs. If the health standard is taken into consideration, the health damages of MTR should be weighed more heavily in a cost-benefit analysis than just pure monetary benefits (or costs). This may call for an even greater tax on MTR to account for the weighted costs or perhaps a ban on MTR altogether due to the high costs to quality of life.
As the Downstream Strategies report concluded that wind power would be a preferable option to mountaintop removal in Raleigh County, there is no reason why this could not be implemented in other parts of Appalachia. The initial costs of set-up would most likely pose the greatest challenge in creating wind farms in place of mountaintop removal. Thus, government could also subsidize or give tax breaks for the building of wind farms in order to encourage clean technology. Wind farms could easily account for jobs lost to MTR and provide a switch in the energy sector of the economy. A tax on MTR would probably encourage some cross over to clean technology anyway, but subsidies from the government for the initial costs may help this sector get off the ground as it is an economy of scale.
References
- American Bird Conservancy (2007), "Mountaintop Removal/Valley Fill Coal Mining Impacts on Birds" http://www.abcbirds.org/conservationissues/threats/energyproduction/mountaintop.html
- American Energy Wind Association (2007), "Wind Power Today" http://www.awea.org/pubs/factsheets/WindPowerToday_2007.pdf
- Appalachian Voices (2007), "Economics of Mountaintop Removal" http://www.appvoices.org/index.php?/mtr/economics/
- Appalachian Voices (2007), "Mountaintop Removal Coal Mining" http://www.appvoices.org/index.php?/site/mtr_overview/
- Appalachian Voices (2007), "What are the Environmental Impacts of Mountaintop Removal?" http://www.appvoices.org/index.php?/mtr/environmental_impacts/
- Arbel, Shani (2003), "Mountaintop Removal Mining" http://serendip.brynmawr.edu/local/scisoc/environment/seniorsem03/mtr.pdf
- Boyle, Katherine (2009), "EPA to review mountaintop removal's impact on water quality" http://www.nytimes.com/gwire/2009/03/24/24greenwire-epa-halts-mountaintop-permitting-will-review-w-10274.html
- Coalwood West Virginia, “Types of Coal Mines” http://www.coalwoodwestvirginia.com/coal_mining.htm
- Downstream Strategies (2008), "The Long-Term Economic Benefits of Wind Versus Mountaintop Removal Coal on Coal River Mountain, West Virginia" http://www.coalriverwind.org/wp-content/uploads/2008/12/coalvswindoncoalrivermtn-final.pdf
- Energy Information Administration (2007), "Renewable Energy Trends in Consumption and Electricity" http://www.eia.doe.gov/cneaf/solar.renewables/page/trends/rentrends.html
- Engelhardt, F. Rainer. "Environmental Effects of Petroleum Exploration: A Practical Perspective" http://www.crownminerals.govt.nz/cms/pdf-library/petroleum-conferences-1/1989-petroleum-conference-proceedings/engelhardt-669-kb-pdf
- Greenpeace, "End the Nuclear Age" http://www.greenpeace.org/international/campaigns/nuclear
- Hill, Nelson, Tilman, Polasky, & Tiffany (2006), "Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels" http://www.pnas.org/content/103/30/11206.full.pdf+html
- Johannsen, Kristin (2005), "Dirty Money - The Economy of Coal" http://windpub.com/dirtymoney.htm
- Lindsey, Rebecca (2007), "Coal Controversy in Appalachia" http://earthobservatory.nasa.gov/Features/MountaintopRemoval/
- McQuaid, John (2009), "Mining the Mountains" http://www.smithsonianmag.com/science-nature/36176804.html
- "Mid-Atlantic Mountaintop Mining", EPA http://www.epa.gov/region3/mtntop/index.htm
- "Mining Operations as Nonpoint Source Pollution" (2009), EPA http://www.epa.gov/reg3wapd/nps/mining
- "Mountaintop Mining Fact Book" (2009), National Mining Association, www.nma.org/pdf/fact_sheets/mtm.pdf
- "Mountaintop removal mining" http://en.wikipedia.org/wiki/Mountaintop_removal
- National Renewable Energy Labratory (2006), "Economic, Energy, and Environmental Benefitsof Concentrating Solar Power in California" http://www.nrel.gov/docs/fy06osti/39291.pdf
- Nuclear Energy Institute (2009), "Reliable and Affordable Energy" http://www.nei.org/keyissues/reliableandaffordableenergy/
- Ohio Valley Environmental Coalition, “New York Times illustration of mountaintop removal process” http://www.ohvec.org/issues/mountaintop_removal/articles/2004_08_09.html
- Pond, Gregory J., Margaret Passmore, Frank A. Borsuk, Lou Reynolds, and Carole J. Rose (2008), "Downstream Effects of Mountaintop Coal Mining: Comparing Biological Conditions Using Family- and Genus-level Macroinvertebrate Bioassessment Tools." The North American Benthological Society.
- Sierra Club, "Mountaintop Removal Coal Mining: Destroying Appalachia One Mountain At a Time," http://www.sierraclub.org/MTR/
- Sustainable Forests Partnership, "How is Forest Fragmentation Affecting You?" http://sfp.cas.psu.edu/fragmentation/how.htm
- ThinkQuest, “Shaft Mining” http://library.thinkquest.org/05aug/00461/shaft.htm
- United Mine Workers of America, “Types of Underground Coal Mines” http://www.umwa.org/index.php?q=content/types-underground-coal-mines
- United States Department of Energy, "Oil" http://www.energy.gov/energysources/oil.htm
- United States Environmental Protection Agency, "Mid-Atlantic Mountaintop Mining" http://www.epa.gov/Region3/mtntop/#impacts
- United States Geological Survey (2007), "Oil Wells Produce More Than Just Oil - Environmental Impact of Produced Water" http://toxics.usgs.gov/highlights/ph20.html
- Wasson, Matt (2009), "Mountaintop Removal Blow-Back" http://www.huffingtonpost.com/matt-wasson/mountaintop-removal-blow_b_179163.html
- Wise Uranium Project (2008), "The Inez Coal Tailings Dam Failure (Kentucky USA)" http://www.wise-uranium.org/mdafin.html
- Zellmer, Sandi (2005), Center for Progressive Reform, "Mountaintop Removal" http://www.progressiveregulation.org/perspectives/mt_top.cfm
Images:
- Alternative mining methods to mountaintop removal mining. http://images.encarta.msn.com/xrefmedia/zencmed/targets/illus/ilt/T629100A.gif
- Clean stream/polluted stream image courtesy of http://endmtr.com/2008/09/21/pollution-continues-long-after-mining-has-ended/
- Coal Production and Unemployment in West Virginia graph courtesy of http://www.appvoices.org/index.php?/mtr/economics/
- Contaminated Drinking Water in Tennessee courtesy of Corbis
- Mountaintop Removal image courtesy of http://www.climatechange.umaine.edu/Research/Contrib/html/22.html
- Mountaintop Removal Permits image of EPA Administrator Lisa Jackson courtesy of [West Virginia Gazette Blog]
- Nuclear Power image courtesy of http://www.flickr.com/photos/lungstruck/2303642958/
- Number of Coal Miners vs. Amount of Coal Mined graph courtesy of http://www.appvoices.org/index.php?/mtr/economics/
- Office of Surface Mining seal courtesy of Wikepedia
- Poverty and Strip Mining in Appalachia image courtesy of http://www.huffingtonpost.com/matt-wasson/mountaintop-removal-blow_b_179163.html
- San Francisco oil spill image courtesy of: http://www.flickr.com/photos/taylar/2039092275/
- Sludge dam break, Martin County image courtesy of: http://sfp.cas.psu.edu/fragmentation/how.htm
- Valley Fill image courtesy of: http://www.flickr.com/photos/nrdc_media/2965230246/
- Wind Energy Graph image courtesy of: http://www.grinningplanet.com/2004/12-14/wind-power-wind-energy-article.htm
- Wind Turbines image courtesy of http://www.flickr.com/
Authors
Applestein, Cara; Morgan, Arleigh; Rogers, Kelly; Vernon, Andrei