Some Math

From Dickinson College Wiki
Jump to navigationJump to search

The following explanatory model was presented by Lawrence H. White.

These are the terms used in the formulation

?= expected profit

r b =rate on bills

rd=rate on deposits

C= operating costs

L=expected liquidity costs

N=notes

S=specie

P= % adjustment cost for impending specie deficiency. Assumed to be constant

X= net specie outflow during the given period

P(X? N,D)= the pdf of X given N and D

S=B=N+D+K

?=rb- rdD- C- L

C= f (S,B,N,D)

(costs are function of the entries in the balance sheet)

L= g (S, N, D)

(in case of exhaustion of specie)

L=  ?s? p(X-S) P(X? N,D)dx

(Holding notes and deposits constant, the expected liquidity costs decrease when the amount of specie increases)

L(s)<0

L(n)>0

L(d)>0

From these partial derivatives, it follows that expected liquidity costs decrease when S increases. Also, L increases when N and D increase. Finally, let us solve this using a Lagrangian. We obtain the following equimarginal equations

?(S,B,N,D,K)= rbB-rdD-C-L+ ? (K-S-B+N+D)

?s=-Cs-Ls-?=0

?B=rb-Cb-?=0

?N=-CN>-LN-?=0

?D=-rd-CD-LD+?=0

??=K-S-B+N+D=0

r b-CB=-C B-LS=CN+LN=rd+C D+LD

Finally, we can conclude that the profit optimization condition for free banking is the following:

The marginal net benefit from holding specie should be equal to the marginal cost of maintaining notes in circulation

White, Lawrence. "Competition and Currency: Essays on Free Banking and Money." New York: New York University Press, 1989.